16,697 research outputs found

    Orbital circularisation of white dwarfs and the formation of gravitational radiation sources in star clusters containing an intermediate mass black hole

    Full text link
    (abbreviated) We consider how tight binaries consisting of a super-massive black hole of mass M=103104MM=10^{3}-10^{4}M_{\odot} and a white dwarf can be formed in a globular cluster. We point out that a major fraction of white dwarfs tidally captured by the black hole may be destroyed by tidal inflation during ongoing circularisation, and the formation of tight binaries is inhibited. However, some stars may survive being spun up to high rotation rates. Then the energy loss through gravitational wave emission induced by tidally excited pulsation modes and dissipation through non linear effects may compete with the increase of pulsation energy due to dynamic tides. The semi-major axes of these stars can be decreased below a 'critical' value where dynamic tides are not effective because pulsation modes retain phase coherence between successive pericentre passages. The rate of formation of such circularising stars is estimated assuming that they can be modelled as n=1.5n=1.5 polytropes and that results of the tidal theory for slow rotators can be extrapolated to fast rotators. We estimate the total capture rate as N˙2.5108M41.3r0.12.1yr1\sim \dot N\sim 2.5\cdot 10^{-8}M_{4}^{1.3}r_{0.1}^{-2.1}yr^{-1}, where M4=M/104MM_{4}=M/10^4M_{\odot} and r0.1r_{0.1} is the radius of influence of the black hole in units 0.1pc0.1pc. We find that the formation rate of tight pairs is approximately 10 times smaller than the total capture rate. It is used to estimate the probability of detection of gravitational waves coming from such tight binaries by LISA. We conclude that LISA may detect such binaries provided that the fraction of globular clusters with black holes in the mass range of interest is substantial and that the dispersion velocity of the cluster stars near the radius of influence of the black hole exceeds 20km/s\sim 20km/s.Comment: accepted for publication in Astronomy and Astrophysics, minor corrections in proof

    On The Violation Of Marshall-Peierls Sign Rule In The Frustrated J1J2J_{1}-J_{2} Heisenberg Antiferromagnet

    Full text link
    We present a number of arguments in favor of the suggestion that the Marshall-Peierls sign rule survives the frustration in the square-lattice Heisenberg antiferromagnet with frustrating next-nearest-neighbor (diagonal) bonds (J1J2J_{1}-J_{2} model) for relatively large values of the parameter J2/J1J_{2}/J_{1}. Both the spin-wave analysis and the exact-diagonalization data concerning the weight of Marshall states support the above suggestion.Comment: 8 pages, LaTex, 2 figurs on reques

    Relativistic cross sections of mass stripping and tidal disruption of a star by a super-massive rotating black hole

    Full text link
    [abbreviated] We consider the problem of tidal disruption of a star by a super-massive Kerr black hole. Using a numerically fast Lagrangian model of the tidally disrupted star we survey the parameter space of the problem and find the regions in the parameter space where the total disruption of the star or a partial mass loss take place as a result of fly-by around the black hole. Our treatment is based on General Relativity, and we consider the range of the black hole masses where the tidal disruption competes with the relativistic effect of direct capture of the star by the black hole. We find that our results can be represented on the plane of specific orbital angular momenta of the star (jθ,jϕ)(j_{\theta}, j_{\phi}). We calculate the contours of a given mass loss of the star on this plane, referred to as the tidal cross sections, for a given black hole mass MM, rotational parameter aa and inclination of the trajectory of the star with respect to the black hole equatorial plane. It is shown that the tidal cross sections can be approximated as circles symmetric above the axis jϕ=0j_{\phi}=0, and shifted with respect to the origin of the coordinates in direction of negative jθj_{\theta}. The radii and shifts of these circles are obtained numerically for the black hole masses in the range 5105M109M5\cdot 10^{5}M_{\odot}-10^{9}M_{\odot} and different values of aa. It is shown that when a=0a=0 the tidal disruption takes place for M<5107MM < 5\cdot 10^{7}M_{\odot} and when a1a\approx 1 the tidal disruption is possible for M<109MM < 10^{9}M_{\odot}.Comment: 11 pages, 16 figures, A&A in press, the text is clarified, the title and the abstract shown in text are change

    A model of gravitation with global U(1)-symmetry

    Get PDF
    It is shown that an embedding of the general relativity 44-space into a flat 1212-space gives a model of gravitation with the global U(1)U(1)-symmetry and the discrete D1D_{1}-one. The last one may be transformed into the SU(2)SU(2)-symmetry of the unified model, and the demand of independence of U(1)U(1)- and SU(2)SU(2)-transformations leads to the estimate sin2θmin=0,20\sin^{2}\theta_{min}=0,20 where θmin\theta_{min} is an analog of the Weinberg angle of the standard model.Comment: 7 page

    Semiclassical dynamics of domain walls in the one-dimensional Ising ferromagnet in a transverse field

    Full text link
    We investigate analytically and numerically the dynamics of domain walls in a spin chain with ferromagnetic Ising interaction and subject to an external magnetic field perpendicular to the easy magnetization axis (transverse field Ising model). The analytical results obtained within the continuum approximation and numerical simulations performed for discrete classical model are used to analyze the quantum properties of domain walls using the semiclassical approximation. We show that the domain wall spectrum shows a band structure consisting of 2SS non-intersecting zones.Comment: 15 pages, 9 figure
    corecore